Options
Nagar, Rajendra
Loading...
Preferred name
Nagar, Rajendra
Alternative Name
Nagar, R.
Main Affiliation
Web Site
ORCID
Scopus Author ID
57190372797
Researcher ID
GCG-0666-2022
Now showing 1 - 3 of 3
- PublicationLearning vision-based robotic manipulation tasks sequentially in offline reinforcement learning settings(2024)
;Sudhir Pratap Yadav; Suril V. ShahWith the rise of deep reinforcement learning (RL) methods, many complex robotic manipulation tasks are being solved. However, harnessing the full power of deep learning requires large datasets. Online RL does not suit itself readily into this paradigm due to costly and time-consuming agent-environment interaction. Therefore, many offline RL algorithms have recently been proposed to learn robotic tasks. But mainly, all such methods focus on a single-task or multitask learning, which requires retraining whenever we need to learn a new task. Continuously learning tasks without forgetting previous knowledge combined with the power of offline deep RL would allow us to scale the number of tasks by adding them one after another. This paper investigates the effectiveness of regularisation-based methods like synaptic intelligence for sequentially learning image-based robotic manipulation tasks in an offline-RL setup. We evaluate the performance of this combined framework against common challenges of sequential learning: catastrophic forgetting and forward knowledge transfer. We performed experiments with different task combinations to analyse the effect of task ordering. We also investigated the effect of the number of object configurations and the density of robot trajectories. We found that learning tasks sequentially helps in the retention of knowledge from previous tasks, thereby reducing the time required to learn a new task. Regularisation-based approaches for continuous learning, like the synaptic intelligence method, help mitigate catastrophic forgetting but have shown only limited transfer of knowledge from previous tasks. - PublicationLISR: Learning Linear 3D Implicit Surface Representation Using Compactly Supported Radial Basis Functions(2024)
;Atharva Pandey ;Vishal Yadav; Implicit 3D surface reconstruction of an object from its partial and noisy 3D point cloud scan is the classical geometry processing and 3D computer vision problem. In the literature, various 3D shape representations have been developed, differing in memory efficiency and shape retrieval effectiveness, such as volumetric, parametric, and implicit surfaces. Radial basis functions provide memory-efficient parameterization of the implicit surface. However, we show that training a neural network using the mean squared error between the groundtruth implicit surface and the linear basis-based implicit surfaces does not converge to the global solution. In this work, we propose locally supported compact radial basis functions for a linear representation of the implicit surface. This representation enables us to generate 3D shapes with arbitrary topologies at any resolution due to their continuous nature. We then propose a neural network architecture for learning the linear implicit shape representation of the 3D surface of an object. We learn linear implicit shapes within a supervised learning framework using ground truth Signed-Distance Field (SDF) data for guidance. The classical strategies face difficulties in finding linear implicit shapes from a given 3D point cloud due to numerical issues (requires solving inverse of a large matrix) in basis and query point selection. The proposed approach achieves better Chamfer distance and comparable F-score than the state-of-the-art approach on the benchmark dataset. We also show the effectiveness of the proposed approach by using it for the 3D shape completion task. - PublicationRobust extrinsic symmetry estimation in 3D point clouds(2024)Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing due to its various applications, such as compression, object detection, robotic grasping, 3D surface reconstruction, etc. Several approaches exist to solve this problem for clean 3D point clouds. However, it is a challenging problem to solve in the presence of outliers and missing parts. The existing methods try to overcome this challenge primarily by voting-based techniques but do not work efficiently. In this work, we proposed a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts. We pose the problem of finding the optimal estimator for the reflection symmetry as an optimization problem on a 2-sphere that quickly converges to the global solution for an approximate initialization. We further adapt the heat kernel signature for symmetry invariant matching of mirror symmetric points. This approach helps us to decouple the chicken-and-egg problem of finding the optimal symmetry plane and correspondences between the reflective symmetric points. The proposed approach achieves comparable mean ground-truth error and 4.5% increment in the F-score as compared to the state-of-the-art approaches on the benchmark dataset.