Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Ionic conductivity mechanisms in PEO–NaPF<sub>6</sub> electrolytes
 
  • Details
Options

Ionic conductivity mechanisms in PEO–NaPF<sub>6</sub> electrolytes

Journal
Nanoscale
ISSN
2040-3364
Date Issued
2025-09
Author(s)
Hema Teherpuria
Sipra Mohapatra
Akash K. Meel
Sapta Sindhu Paul Chowdhury
Subbarao Kanchi
Prabhat K. Jaiswal
Mogurampelly, Santosh 
Department of Physics 
DOI
10.1039/d5nr01630d
Abstract
Understanding ion transport mechanisms in sodium ion-based polymer electrolytes is critical, considering the emergence of sodium ion electrolyte technologies as sustainable alternatives to lithium-based systems. In this paper, we employ all-atom molecular dynamics simulations to investigate the salt concentration (c) effects on ionic conductivity (σ) mechanisms in sodium hexafluorophosphate (NaPF<inf>6</inf>) in polyethylene oxide (PEO) electrolytes. Sodium ions exhibit ion solvation shell characteristics comparable to those of lithium-based polymer electrolytes, with similar anion coordination but more populated oxygen coordination in the polymer matrix. We find that the diffusion coefficient of Na+ and PF<inf>6</inf>− follows the Stokes–Einstein behavior with viscosity (η) and ion-pair relaxation timescales (τ <inf>c</inf>): D <inf>+</inf> ∼ τ <inf>c</inf>−0.87, D <inf>−</inf> ∼ τ <inf>c</inf>−0.93, D <inf>+</inf> ∼ η −1.08, and D <inf>−</inf> ∼ η −1.09, emphasizing the role of ion–polymer coordination and relaxation behavior in governing ion transport. Further analysis reveals an intriguing nonmonotonic trend in the Nernst–Einstein and true ionic conductivity as a function of c, peaking near c = 1 M. We model this behavior as σ ∼ c αexp(−c/c <inf>0</inf>), where the nonlinear term (α = 1.6) reflects efficient ion transport due to the absence of ion–ion correlations at low c, and the exponential decay quantifies viscosity-driven losses in ionic conductivity at high c. Our work establishes molecular guidelines to optimize conductivity in sodium-conducting polymer electrolytes, advancing next-generation sodium ion electrolyte technologies. © 2025 Elsevier B.V., All rights reserved.
Funding(s)
Indian Institute Of Technology Jodhpur
SERB
Subjects
  • Electrolytes

  • Ionic conductivity

  • Lithium

  • Metal ions

  • Molecular dynamics

  • Negative ions

  • Oxygen

  • Sodium

  • Sodium compounds

  • Viscosity

  • Conductivity mechanis...

  • Dynamics simulation

  • Hexafluorophosphates

  • Ion transport mechani...

  • Ion-transport

  • Ions solvation

  • Oxide electrolytes

  • Polymer electrolyte

  • Salt concentration

  • Sodium ions

  • Polyethylene oxides

  • electrolyte

  • lithium

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback