Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Investigation of Atomic Layer Futuristic Memory Devices of Binary Chalcogenides WX<inf>2</inf>(X = S and Se): First-Principles Study
 
  • Details
Options

Investigation of Atomic Layer Futuristic Memory Devices of Binary Chalcogenides WX<inf>2</inf>(X = S and Se): First-Principles Study

Date Issued
2022-01-01
Author(s)
Kumar, Narender
Saleh, Na'il
Kumar, Arun
Verma, Mohan Lal
Ranjan, Pranay
DOI
10.1109/ASET53988.2022.9735000
Abstract
We have investigated the spin-dependent structural, electronic and localized-induced magnetic moment in an atomic layer of binary chalcogenide semiconductors, Tungsten sulphide/selenide (WX2, where X= S, Se) using first-principle calculations. It was observed that the addition of fluorine to the WX2 monolayer lattice reduces the bandgap of the material and induced a magnetic moment of ~1 Bohr magneton. Moreover, the reasons behind this magnetic transition from non-magnetic semiconductors to magnetic semiconductors were investigated and discussed. The calculated binding energy reveals that the pristine monolayer is more stable than the fluorine doped WX2 sheet. Also, intermittent energy levels were created due to the fluorine atoms and resulted in p-type acceptor semiconductor behaviour in spin up and n-type donor behaviour in spin-down of WX2 monolayer. It was observed that the unparalleled behaviour of spin can be tuned to suitable applications such as memory devices and spintronics.
Subjects
  • Spintronics

  • Transition Metal Dich...

  • Tungsten Sulfide

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback