Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Strategically Designed Antifibrotic Gold Nanoparticles to Prevent Collagen Fibril Formation
 
  • Details
Options

Strategically Designed Antifibrotic Gold Nanoparticles to Prevent Collagen Fibril Formation

ISSN
07437463
Date Issued
2017-11-21
Author(s)
Anand, Bibin Ganadhason
Dubey, Kriti
Shekhawat, Dolat Singh
Prajapati, Kailash Prasad
Kar, Karunakar
DOI
10.1021/acs.langmuir.7b01504
Abstract
Because uncontrolled accumulation of collagen fibrils has been implicated in a series of pathologies, inhibition of collagen fibril formation has become one of the necessary strategies to target such collagen-linked complications. The presence of hydroxyproline (Hyp) at the Y position in (Gly-X-Y)n sequence pattern of collagen is known to facilitate crucial hydrophobic and hydration-linked interactions that promote collagen fibril formation. Here, to target such Hyp-mediated interactions, we have synthesized uniform, thermostable, and hemocompatible Hyp coated gold nanoparticles (AuNPsHYP) and have examined their inhibition effect on the fibril formation of type I collagen. We found that collagen fibril formation is strongly suppressed in the presence of AuNPsHYP and no such suppression effect was observed in the presence of free Hyp and control Gly-coated nanoparticles at similar concentrations. Both isothermal titration calorimetric studies and bioinformatics analysis reveal possible interaction between Hyp and (Gly-Pro-Hyp) stretches of collagen triple-helical model peptides. Further, gold nanoparticles coated with proline (AuNPsPRO) and tryptophan (AuNPsTRP) also suppressed collagen fibril formation, suggesting their ability to interfere with aromatic-proline as well as hydrophobic interactions between collagen molecules. The Hyp molecules, when surface functionalized, are predicted to interfere with the Hyp-mediated forces that drive collagen self-assembly, and such inhibition effect may help in targeting collagen linked pathologies.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback