Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Capacity degradation analysis of the rechargeable iron ion batteries using post-mortem analysis and the impedance spectroscopy
 
  • Details
Options

Capacity degradation analysis of the rechargeable iron ion batteries using post-mortem analysis and the impedance spectroscopy

ISSN
09477047
Date Issued
2023-04-01
Author(s)
Yadav, Jitendra Kumar
Rani, Bharti
Dixit, Ambesh
DOI
10.1007/s11581-023-04925-z
Abstract
We fabricated rechargeable iron ion batteries (RIIBs) using mild steel (MS) as a negative electrode, vanadium penta oxide as a positive electrode, and ferrous perchlorate hydrate in tetra-ethylene glycol dimethyl ether (TGDME)-based solvent under ambient conditions without any inert atmosphere and investigated the performance degradation. The cell exhibits ~ 120 mAh g−1 specific capacity at a 33 mAg−1 current density. The initial capacity fades to about 41% in 30 cycles. The cell was disassembled, and post-mortem characterizations were carried out for both electrodes. The performance degradation is attributed to the corrosion of the mild steel and the formation of multiphase iron–vanadium-based oxides at the cathode end, reducing the iron ion concentration. Thus, the present studies provide a microscopic understanding of capacity fading in iron ion batteries and may assist in designing suitable electrode materials for the improved electrochemical response.
Subjects
  • Capacity fading

  • Electrode’s post-mort...

  • Impedance

  • Mild steel (MS)

  • Rechargeable iron ion...

  • Vanadium oxide

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback