Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Superconvergence of Legendre spectral projection methods for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" display="inline" id="d1e3822"><mml:mi>m</mml:mi></mml:math>th order integro-differential equations with weakly singular kernels
 
  • Details
Options

Superconvergence of Legendre spectral projection methods for <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si3.svg" display="inline" id="d1e3822"><mml:mi>m</mml:mi></mml:math>th order integro-differential equations with weakly singular kernels

Journal
Journal of Computational and Applied Mathematics
ISSN
03770427
Date Issued
2024
Author(s)
Arnab Kayal
Mandal, Moumita 
Department of Mathematics 
Gnaneshwar Nelakanti
DOI
10.1016/j.cam.2023.115585
Abstract
In this article, we apply Legendre spectral Galerkin, Legendre spectral multi-projection methods and their iterated versions to find the approximate solution of mth order Fredholm integro-differential equations with weakly singular kernel. Motivated by Mandal et al. (2023), we use Cauchy repeated integral theorem to transform the integro-differential equation to an single integral equation and obtain superconvergence results by iterated Legendre spectral Galerkin method, in spite of the singularity in the kernel function and unbounded differential operator. We have further improved the convergence rate of the approximate solution by using iterated Legendre spectral multi-projection method. Global Legendre polynomials are used as a basis for the approximating space, to reduce the computational cost of our proposed methods. In this article, we have derived theoretical error bounds and obtained the global convergence rates for all the discussed methods in both L2 and infinity norms. Numerical methods are implemented on examples to justify the theoretical results.
Subjects
  • Integro-differential ...

  • Legendre spectral Gal...

  • Legendre spectral mul...

  • Superconvergence rate...

  • Weakly singular kerne...

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback