Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation
 
  • Details
Options

Comparative Study of K-means, Gaussian Mixture Model, Fuzzy C-means algorithms for Brain Tumor Segmentation

Date Issued
2017
Author(s)
Baid, U
Indian Institute of Technology Jodhpur
Talbar, S
Talbar, S
Abstract
Magnetic Resonance Imaging (MRI) is one of the widely used imaging modality for visualizing and assessing the brain anatomy and its functions in non-invasive manner. The most challenging task in analysis of brain MRI images is image segmentation. Automatic and accurate detection of brain tumor is one of the major areas of research in medical image processing. Accurate segmentation of brain tumor helps radiologists for precise treatment planning. In this paper results of one hard clustering algorithm i.e. K-means clustering and two soft clustering algorithm, Gaussian Mixture Model (GMM) and Fuzzy C-means (FCM) clustering are compared. These algorithms are tested on BRATS 2012 training database of High Grade and Low Grade Glioma tumors. Various evaluation parameters like Dice index, Jaccard index, Sensitivity, Specificity are calculated for all the algorithms and comparative analysis is carried out. Experimental results state that Fuzzy C-means clustering outperforms K-means and Gaussian Mixture Model algorithm for brain tumor segmentation problem.
Subjects
  • Brain Tumor Segmentat...

  • K-means clustering

  • Gaussian Mixture Mode...

  • Fuzzy C-means cluster...

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback