Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Analysis of α-fractal functions without boundary point conditions on the Sierpiński gasket
 
  • Details
Options

Analysis of α-fractal functions without boundary point conditions on the Sierpiński gasket

Journal
Applied Mathematics and Computation
ISSN
963003
Date Issued
2025-02
Author(s)
Chandramouli , V. V. M. S 
Department of Mathematics 
S. Verma
DOI
10.1016/j.amc.2024.129072
Abstract
This note aims to manifest the existence of a class of α-fractal interpolation functions (α-FIFs) without boundary point conditions at the m-th level in the space consisting of continuous functions on the Sierpiński gasket (SG). Furthermore, we add the existence of the same class in the Lp space and energy space on SG. Under certain hypotheses, we show the existence of α-FIFs without boundary point conditions in the Hölder space and oscillation space on SG, and also calculate the fractal dimensions of their graphs. © 2024 Elsevier Inc.
Subjects
  • Boundary conditions

  • Digital arithmetic

  • Boundary-points

  • Box dimension

  • Energy spaces

  • Fractal interpolation...

  • Hausdorff dimension

  • Holder space

  • L-p spaces

  • Oscillation space

  • Sierpiński gasket

  • Α-fractal interpolati...

  • Fractal dimension

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback