Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Quantum cryptography over non-Markovian channels
 
  • Details
Options

Quantum cryptography over non-Markovian channels

ISSN
15700755
Date Issued
2017-05-01
Author(s)
Thapliyal, Kishore
Pathak, Anirban
Banerjee, Subashish 
Department of Physics 
DOI
10.1007/s11128-017-1567-1
Abstract
A three-party scheme for secure quantum communication, namely controlled quantum dialogue (CQD), is analyzed under the influence of non-Markovian channels. By comparing with the corresponding Markovian cases, it is seen that the average fidelity can be maintained for relatively longer periods of time. Interestingly, a number of facets of quantum cryptography, such as quantum secure direct communication, deterministic secure quantum communication and their controlled counterparts, quantum dialogue, quantum key distribution, quantum key agreement, can be reduced from the CQD scheme. Therefore, the CQD scheme is analyzed under the influence of damping, dephasing and depolarizing non-Markovian channels, and subsequently, the effect of these non-Markovian channels on the other schemes of secure quantum communication is deduced from the results obtained for CQD. The damped non-Markovian channel causes a periodic revival in the fidelity, while fidelity is observed to be sustained under the influence of the dephasing non-Markovian channel.
Subjects
  • Depolarizing channel

  • Non-Markovian channel...

  • Quantum cryptography

  • Secure quantum commun...

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback