Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Bridging language to visuals: towards natural language query-to-chart image retrieval
 
  • Details
Options

Bridging language to visuals: towards natural language query-to-chart image retrieval

Journal
International Journal of Multimedia Information Retrieval
ISSN
21926611
Date Issued
2024
Author(s)
Neelu Verma
Anik De
Mishra, Anand 
Department of Computer Science and Engineering 
DOI
10.1007/s13735-024-00343-7
Abstract
Given a natural language query, mining a relevant chart image, i.e., the one that contains the answer to the query, is an overlooked problem in the literature. Our study explores this novel problem. Consider an example of retrieving relevant chart images for a query: Which Indian city has the highest annual rainfall over the past decade?. Retrieving relevant chart images for such natural language queries necessitates a deep semantic understanding of chart images. Towards addressing this problem, in this work, we make two key contributions: (a) We present a dataset, namely WebCIRD (or Web Chart Image Retrieval) for studying this problem, and (b) propose a solution viz. ChartSemBERT that offers a deeper semantic understanding of chart images for effective natural language-to-chart image retrieval. Our proposed approach yields remarkable performance improvements compared to the existing baselines, achieving R@10 as 86.9%.
Subjects
  • BERT

  • Chart images

  • Chart-encoder

  • Retrieval

  • Semantic labeling

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback