Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Effect of Single Bevel Groove Geometry on the Impact Strength of Dissimilar Welded Joint of P22 and P91 Steel
 
  • Details
Options

Effect of Single Bevel Groove Geometry on the Impact Strength of Dissimilar Welded Joint of P22 and P91 Steel

Date Issued
2022-09-01
Author(s)
Kumar, Sanjeev
Sirohi, Sachin
Pandey, Shailesh M.
Bhatt, Dhowmya
Pandey, Chandan
DOI
10.3390/su141811739
Abstract
The dissimilar combination of 2.25Cr-1Mo (P22) and modified 9Cr-1Mo (P91) obtained using Gas Tungsten Arc Welding (GTAW) process employing the Ni-based superalloy filler ERNiCr-3 (IN82) and ERNiCrMo-3 (IN625) have been investigated for microstructure evolution and mechanical properties. The butt weld joint was produced using single bevel groove geometry. The structural integrity of the welded joint was measured in respect of tensile strength, impact toughness and hardness. The alloying elements’ segregation at the inter-dendritic areas of the weld metal was witnessed while using the IN82 and IN625 filler. The impact test trials showed the mixed mode of fracture with an impact toughness of 82 ± 6 J and 70 ± 5 J for IN82 and IN625 filler, respectively, ensuring that the welded joint was safe for the end boiler application. The tensile test coupons were fractured from the P22 base metal in all the trials and for both the fillers which confirmed the negligible effect of the filler composition on the tensile properties. The hardness plots showed the inhomogeneity in hardness value, which was also supported by the microstructure evolution along the weldments. The average hardness of the IN82 filler was measured lower than the IN625 filler.
Subjects
  • GTAW

  • impact toughness

  • IN 625

  • IN 82

  • microstructure

  • single bevel

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback