Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Optimization of Source/Drain-epi Region Height in GAA Nanosheet FET for RF Applications
 
  • Details
Options

Optimization of Source/Drain-epi Region Height in GAA Nanosheet FET for RF Applications

Journal
2024 Device Research Conference (DRC)
ISSN
15483770
Date Issued
2024
Author(s)
Yogendra Machhiwar
Pragya Kushwaha
Agarwal, Harshit 
Department of Electrical Engineering 
DOI
10.1109/DRC61706.2024.10605576
Abstract
As we approach the 3nm technology node, achieving both high ION/IOFF ratio and optimal RF performance in gate-all-around (GAA) nanosheet FET becomes increasingly challenging. As per IEEE International Roadmap for Devices and Systems (IRDS), scaling spacer thickness down to 5nm reduces series resistance. It also leads to an increase in parasitic capacitance (Cpar) negatively impacting RF figures of merit. This work proposes a novel Front-End-Of-Line (FEOL) design approach to mitigate this trade-off. Utilizing 3D TCAD simulations, we demonstrate that adjusting the source/drain-epi height (Hs/d-epi) can significantly improve RF performance without compromising the ION/IOFF ratio. Compared to conventional designs, our optimized GAA nanosheet structure exhibits a 24.88%reduction in Cpar, 3.22% improvement in transconductance (gm), and 13.66% increase in cut-off frequency (Ft), making it a promising candidate for high-performance RF applications at the 3nm node.
Subjects
  • Capacitance

  • Economic and social e...

  • Electric resistance

  • Device-scaling

  • Devices and systems

  • Gate-all-around

  • Optimisations

  • RF applications

  • RF performance

  • Roadmap

  • Source-drain

  • System scaling

  • Technology nodes

  • Nanosheets

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback