Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. High-Performance Flexible Resistive RAM with PVP:GO Composite and Ultrathin HfO<inf>x</inf> Hybrid Bilayer
 
  • Details
Options

High-Performance Flexible Resistive RAM with PVP:GO Composite and Ultrathin HfO<inf>x</inf> Hybrid Bilayer

ISSN
00189383
Date Issued
2020-03-01
Author(s)
Varun, Ishan
Bharti, Deepak
Mahato, Ajay Kumar
Raghuwanshi, Vivek
Tiwari, Shree Prakash
DOI
10.1109/TED.2020.2964910
Abstract
Resistive switching behavior of poly (4-vinylphenol):graphene oxide (PVP:GO) composite and ultrathin HfOx hybrid bilayer was explored for developing high-performance flexible resistive random access memory (RRAM) devices. These devices, fabricated with a PVP:GO equivolume solution spin-coated and atomic layer deposited ultrathin HfOx as an active bilayer, exhibited excellent bipolar switching behavior with set and reset voltages as low as 0.6 and-1.46 V, ION/IOFF of >105, and ac and dc switching endurance of over 1400 and 800 cycles, respectively. The same device configuration realized over a flexible polyethylene terephthalate (PET) substrate exhibited a memory window of >103 even after undergoing large mechanical strain (correspoding to a 5-mm bending radius). In addition, after 150 cumulative cycles of consecutive tensile and compressive strain at a 5-mm bending radius, flexible RRAMs demonstrated a clear memory window of 4 × 103 for 104 s. Overall, the incorporation of GO into the PVP solution resulted in achieving better control over conductive filament (CF) growth and, therefore, improved repeatability and reliability. This article indicates that the strategy of incorporating composite and organic-inorganic active bilayer can lead toward the development of high-performance flexible RRAMs.
Subjects
  • Flexible devices

  • graphene oxide (GO) c...

  • hybrid resistive rand...

  • memory window

  • resistive switching (...

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback