Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Attention Aware Debiasing for Unbiased Model Prediction
 
  • Details
Options

Attention Aware Debiasing for Unbiased Model Prediction

ISSN
15505499
Date Issued
2021-01-01
Author(s)
Majumdar, Puspita
Singh, Richa 
Department of Computer Science and Engineering 
Vatsa, Mayank 
Department of Computer Science and Engineering 
DOI
10.1109/ICCVW54120.2021.00459
Abstract
Due to the large applicability of AI systems in various applications, fairness in model predictions is extremely important to ensure that the systems work equally well for everyone. Biased feature representations might often lead to unfair model predictions. To address the concern, in this research, a novel method, termed as Attention Aware Debiasing (AAD) method, is proposed to learn unbiased feature representations. The proposed method uses an attention mechanism to focus on the features important for the main task while suppressing the features related to the sensitive attributes. This minimizes the model's dependency on the sensitive attribute while performing the main task. Multiple experiments are performed on two publicly available datasets, MORPH and UTKFace, to showcase the effectiveness of the proposed AAD method for bias mitigation. The proposed AAD method enhances the overall model performance and reduces the disparity in model prediction across different subgroups.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback