Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. ON THE FOURTH ORDER SEMIPOSITONE PROBLEM IN RN
 
  • Details
Options

ON THE FOURTH ORDER SEMIPOSITONE PROBLEM IN RN

ISSN
10780947
Date Issued
2023-01-01
Author(s)
Biswas, Nirjan
Das, Ujjal
Sarkar, Abhishek
DOI
10.3934/dcds.2022154
Abstract
For N≥ 5 and α > 0, we consider the following semipositone Problem ( equation presented) where g ϵ L1 loc(RN) is an indefinite weight function, fα : R → R is a continuous function that satisfies fα(t) = -α for t ϵ R-, and D2,2(RN) is the completion of C∞ c (RN) with respect to ( ∫ RN (Δu)2)1/2. For fα satisfying subcritical nonlinearity and a weaker Ambrosetti-Rabinowitz type growth condition, we find the existence of α1 > 0 such that for each α ϵ (0, α1), (SP) admits a mountain pass solution. Further, we show that the mountain pass solution is positive if α is near zero. For the positivity, we derive uniform regularity estimates of the solutions of (SP) for certain ranges in (0, α1), relying on the Riesz potential of the biharmonic operator.
Subjects
  • biharmonic operator

  • mountain-pass solutio...

  • positive solutions

  • Riesz potential

  • Semipositone problem

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback