Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Improved Moving Least Square-Based Multiple Dimension Decomposition (MDD) Technique for Structural Reliability Analysis
 
  • Details
Options

Improved Moving Least Square-Based Multiple Dimension Decomposition (MDD) Technique for Structural Reliability Analysis

ISSN
02198762
Date Issued
2021-02-01
Author(s)
Rathi, Amit Kumar
Chakraborty, Arunasis
DOI
10.1142/S0219876220500243
Abstract
This paper presents the state-of-the-art on different moving least square (MLS)-based dimension decomposition schemes for reliability analysis and demonstrates a modified version for high fidelity applications. The aim is to improve the performance of MLS-based dimension decomposition in terms of accuracy, number of function evaluations and computational time for large-dimensional problems. With this in view, multiple finite difference high dimension model representation (HDMR) scheme is developed. This anchored decomposition is implemented starting from an initial reference point and progressively evolving in successive iterations. Most probable point (MPP) of failure is identified in every iteration and is used as the reference point for the next decomposition until it converges. Hermite polynomials in MLS framework are used between the support points for efficient interpolation. The support points are generated sequentially using multiple sparse grids based on the Clenshaw-Curtis scheme. Once the global response surface is constructed using the support points generated in each iteration, importance sampling is employed for reliability analysis. Six different benchmark problems are solved to show its performance vis-à-vis other methods. Finally, reliability-based design of a composite plate is demonstrated, clearly showing the advantage and superiority of the proposed improvements in MLS-based multiple dimension decomposition (MDD).
Subjects
  • high-dimensional mode...

  • moving least square

  • polynomial dimension ...

  • Reliability analysis

  • sequential sparse gri...

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback