Options
Recent advances in g-C<inf>3</inf>N<inf>4</inf>based gas sensors for the detection of toxic and flammable gases: A review
Date Issued
2022-03-01
Author(s)
Bhati, Vijendra Singh
Takhar, Vishakha
Raliya, Ramesh
Kumar, Mahesh
Banerjee, Rupak
DOI
10.1088/2632-959X/ac477b
Abstract
In recent years, many 2D nanomaterials like graphene, MoS2, phosphorene, and metal oxide nanosheets have been investigated for gas sensing applications due to their excellent properties. Amongst other 2D nanomaterials, graphitic carbon nitride (g-C3N4) has attracted significant attention owing to its simple synthesis process, tunable electronic properties, and exceptional physicochemical properties. Such remarkable properties assert g-C3N4 as a potential candidate for the next-generation high-performance gas sensors employed in the detection of toxic and flammable gases. Although several articles and reviews are available on g-C3N4 for their synthesis, functionalities, and applications for the detection of humidity. Few of them have focused their attention on gas sensing using g-C3N4. Thus, in this review, we have methodically summed up the recent advances in g-C3N4 and its composites-based gas sensor for the detection of toxic and flammable gases. Moreover, we have also incorporated the synthesis strategies and the comprehensive physics of g-C3N4 based gas sensors. Additionally, different approaches are presented for the enhancement of gas sensing/detecting properties of g-C3N4 based gas sensors. Finally, the challenges and future scope of g-C3N4 based gas sensors for real-time monitoring of gases have been discussed.