Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. ACLA: An approximate carry-lookahead adder with intelligent carry judgement and correction
 
  • Details
Options

ACLA: An approximate carry-lookahead adder with intelligent carry judgement and correction

ISSN
19483287
Date Issued
2021-04-07
Author(s)
Belwal, Shobhit
Bhattacharjya, Rajat
Goswami, Kaustav
Banerjee, Dip Sankar
DOI
10.1109/ISQED51717.2021.9424329
Abstract
Approximate computing in recent times has emerged as a popular alternative to conventional computing techniques. Fault-tolerant applications in the domains of machine learning, signal processing, and computer vision have shown promising results using approximate computing. Approximations on adders and multipliers have been widely proposed in literature and innovations on that front are still a necessity so as to target specific applications. In this paper, an approximate carry-lookahead adder (ACLA) is proposed which makes use of an intelligent approach for judging the carry of subsequent stages. Also, a correction mechanism is proposed so as to hinder substantial accuracy loss. Experimental results show that ACLA is faster than the traditional ripple-carry adder by 70.5% for 32-bit configurations on an average. In terms of accuracy, for 32-bit configurations, ACLA outperforms other state-of-the-art adders such as SARA [1] and BCSA [2] by 51%.
Subjects
  • Approximate adder

  • Carry judgement

  • Computational complex...

  • Error correction

  • Image processing

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback