Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Repelling hyperbolic Cantor set of a bimodal map
 
  • Details
Options

Repelling hyperbolic Cantor set of a bimodal map

ISSN
0094243X
Date Issued
2022-03-18
Author(s)
Kumar, Rohit
Goyal, Aishwaraya
Chandramouli, V. V.M.S.
DOI
10.1063/5.0083567
Abstract
In this article, we discuss the dynamical properties of a one-parameter family of symmetric bimodal maps Bα: x ↦ (1 - α)x + αx3, such as period doubling bifurcation, basin of attraction, Liapunov exponent and topological entropy, etc. Further, we show that for α > 4, there exists a tripling Cantor set Cα which is generated by Bα. Also, we prove that the topological entropy of Bα restricted to Cα is always positive. Finally, we prove the existence of a repelling hyperbolic Cantor set associated with a symmetric bimodal map.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback