Options
Implication of Wood-Derived Hierarchical Carbon Nanotubes for Micronutrient Delivery and Crop Biofortification
Date Issued
2021-09-21
Author(s)
Dutta, Saikat
Pal, Sharmistha
Sharma, Rakesh K.
Panwar, Pankaj
Kant, Vishav
Khola, Om Pal Singh
DOI
10.1021/acsomega.1c03215
Abstract
A similarity of metal alloy encapsulation with the micronutrient loading in carbon nanoarchitecture can be fueled by exploring carbon nanocarriers to load micronutrient and controlled delivery for crop biofortification. A wood-derived nanoarchitecture model contains a few-graphene-layer that holds infiltrated alloy nanoparticles. Such wood-driven carbonized framework materials with legions of open porous architectures and minimized-tortuosity units further decorated carbon nanotubes (CNTs), which originate from heat treatment to carbonized wood samples. These wood-derived samples can alleviate micronutrient nanoparticle permeation and delivery to the soil. A rapid heat shock treatment can help in distributing N-C-NiFe metal alloy encapsulation in carbon frameworks uniformly in that case; higher heating and rapid extinction of heat shock have led to formation of good dispersion of nanoparticles. The wood-carbon framework decorated with metal alloys displays promising electrocatalytic features and cyclic stability for hydrogen evolution. Envisaged from this strategy, we obtain enough evidence to form an opinion that a singular heat shock process can even lead to a strategy of faster growth of a wood-carbon network with well-dispersed micronutrient metal salts in porous matrices for high-efficiency delivery to the soil. Having envisaged the formation of ultrafine nanoparticles with a good dispersion profile in the case of transition metals and alloy encapsulation in the carbon network due to the rapid heating and quenching rates, we anticipate that the loading of micronutrients in the wood-derived nanoarchitecture of carbonized wood derived carbon nanotube (CW-CNT), which can offer an application in seed germination and enhance growth rates of crops. The experience of controlled experiments on germination of tomato seeds on a medium containing CW-CNT that can diffuse the seed coat with the promotion of water uptake inside seeds for enhanced germination and growth of tomato seedlings can be further extended to cereal crops.