Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Quantum correlations in neutrino oscillations in curved spacetime
 
  • Details
Options

Quantum correlations in neutrino oscillations in curved spacetime

ISSN
24700010
Date Issued
2019-09-16
Author(s)
Dixit, Khushboo
Naikoo, Javid
Mukhopadhyay, Banibrata
Banerjee, Subhashish
DOI
10.1103/PhysRevD.100.055021
Abstract
Gravity induced neutrino-antineutrino oscillations are studied in the context of one- and two-flavor scenarios. This allows one to investigate the particle-antiparticle correlations in two and four level systems, respectively. Flavor entropy is used to probe the entanglement in the system. The well known witnesses of nonclassicality such as Mermin and Svetlichny inequalities are investigated. Since the extent of neutrino-antineutrino oscillation is governed by the strength of the gravitational field, the behavior of nonclassicality shows interesting features as one varies the strength of the gravitational field. Specifically, the suppression of the entanglement with the increase of the gravitational field is observed which is witnessed in the form of decrease in the flavor entropy of the system. The features of the Mermin and the Svetlichny inequalities allow one to make statements about the degeneracy of neutrino mass eigenstates.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback