Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Chemical dynamics simulations of collision induced dissociation of deprotonated glycolaldehyde
 
  • Details
Options

Chemical dynamics simulations of collision induced dissociation of deprotonated glycolaldehyde

ISSN
13873806
Date Issued
2021-01-01
Author(s)
Gahlaut, Anchal
Paranjothy, Manikandan
DOI
10.1016/j.ijms.2020.116468
Abstract
First step of formose or Butlerov reaction involves C–C bond formation between two formaldehyde molecules resulting in glycolaldehyde. This reaction happens under basic conditions in solution. A tandem mass spectrometry investigation of dissociation of deprotonated glycolaldehyde in the gas phase, to study the formose reaction in a retro-synthetic point of view, has been reported. In the present work, we have carried out electronic structure theory calculations and quasi-classical direct chemical dynamics simulations to model the gas phase dissociation of the conjugate base of glycolaldehyde. The dynamics simulations were performed on-the-fly using the hybrid density functional B3LYP theory with the 6-31+G∗ basis set under collision induced dissociation (CID) conditions. Trajectories were launched with two different deprotonated forms of glycolaldehyde for a range of collision energies mimicking experiments. Reverse formose reaction was observed primarily from the slightly higher energy isomer via a non-statistical pathway. Intramolecular hydrogen transfer was ubiquitous in the trajectories. Simulation results were compared with experiments and detailed atomic level dissociation mechanisms are presented.
Subjects
  • Collision induced dis...

  • Density functional th...

  • Direct dynamics

  • Formose reaction

  • Glycolaldehyde anion

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback