Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Mixed Dual-Hop IRS-Assisted FSO-RF Communication System With H-ARQ Protocols
 
  • Details
Options

Mixed Dual-Hop IRS-Assisted FSO-RF Communication System With H-ARQ Protocols

ISSN
10897798
Date Issued
2022-02-01
Author(s)
Verma, Gyan Deep
Mathur, Aashish
Ai, Yun
Cheffena, Michael
DOI
10.1109/LCOMM.2021.3129594
Abstract
Intelligent reflecting surface (IRS) is an emerging key technology for the fifth-generation (5G) and beyond wireless communication systems to provide more robust and reliable communication links. In this letter, we propose a mixed dual-hop free-space optical (FSO)-radio frequency (RF) communication system that serves the end user via a decode-and-forward (DF) relay employing hybrid automatic repeat request (H-ARQ) protocols on both hops. Novel closed-form expressions of the probability density function (PDF) and cumulative density function (CDF) of the equivalent end-to-end signal-to-noise ratio (SNR) are computed for the considered system. Utilizing the obtained statistics, we derive the outage probability (OP) and packet error rate (PER) of the proposed system by considering generalized detection techniques on the source-to-relay (S-R) link with H-ARQ protocol and IRS having phase error. We obtain useful insights into the system performance through the asymptotic analysis which aids to compute the diversity gain. The derived analytical results are validated using Monte Carlo simulation.
Subjects
  • decode-and-forward re...

  • Free-space optical co...

  • Gamma-Gamma turbulenc...

  • hybrid automatic repe...

  • pointing errors

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback