Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. S2D2NET: AN IMPROVED APPROACH FOR ROBUST STEEL SURFACE DEFECTS DIAGNOSIS WITH SMALL SAMPLE LEARNING
 
  • Details
Options

S2D2NET: AN IMPROVED APPROACH FOR ROBUST STEEL SURFACE DEFECTS DIAGNOSIS WITH SMALL SAMPLE LEARNING

ISSN
15224880
Date Issued
2021-01-01
Author(s)
Nath, Vikanksh
Chattopadhyay, Chiranjoy
DOI
10.1109/ICIP42928.2021.9506405
Abstract
Surface defect recognition of products is a necessary process to guarantee the quality of industrial production. This paper proposes a hybrid model, S2D2Net (Steel Surface Defect Diagnosis Network), for an efficient and robust inspection of the steel surface during the manufacturing process. The S2D2Net uses a pretrained ImageNet model as a feature extractor and learns a Capsule Network over the extracted features. The experimental results on a publicly available steel surface defect dataset (NEU) show that S2D2Net achieved 99.17% accuracy with minimal training data and improved by 9.59% over its closest competitor based on GAN. S2D2Net proved its robustness by achieving 94.7% accuracy on a diversity enhanced dataset, ENEU, and improved by 3.6% over its closest competitor. It has better, robust recognition performance compared to other state-of-the-art DNN-based detectors.
Subjects
  • Defect recognition

  • Feature extraction

  • Hybrid model

  • Industry 4.0

  • Surface inspection

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback