Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries
 
  • Details
Options

Highly-Cyclable Room-Temperature Phosphorene Polymer Electrolyte Composites for Li Metal Batteries

ISSN
1616301X
Date Issued
2020-08-01
Author(s)
Rojaee, Ramin
Cavallo, Salvatore
Mogurampelly, Santosh
Wheatle, Bill K.
Yurkiv, Vitaliy
Deivanayagam, Ramasubramonian
Foroozan, Tara
Rasul, Md Golam
Sharifi-Asl, Soroosh
Phakatkar, Abhijit H.
Cheng, Meng
Son, Seoung Bum
Pan, Yayue
Mashayek, Farzad
Ganesan, Venkat
Shahbazian-Yassar, Reza
DOI
10.1002/adfm.201910749
Abstract
Despite significant interest toward solid-state electrolytes owing to their superior safety in comparison to liquid-based electrolytes, sluggish ion diffusion and high interfacial resistance limit their application in durable and high-power density batteries. Here, a novel quasi-solid Li+ ion conductive nanocomposite polymer electrolyte containing black phosphorous (BP) nanosheets is reported. The developed electrolyte is successfully cycled against Li metal (over 550 h cycling) at 1 mA cm−2 at room temperature. The cycling overpotential is dropped by 75% in comparison to BP-free polymer composite electrolyte indicating lower interfacial resistance at the electrode/electrolyte interfaces. Molecular dynamics simulations reveal that the coordination number of Li+ ions around (trifluoromethanesulfonyl)imide (TFSI−) pairs and ethylene-oxide chains decreases at the Li metal/electrolyte interface, which facilitates the Li+ transport through the polymer host. Density functional theory calculations confirm that the adsorption of the LiTFSI molecules at the BP surface leads to the weakening of N and Li atomic bonding and enhances the dissociation of Li+ ions. This work offers a new potential mechanism to tune the bulk and interfacial ionic conductivity of solid-state electrolytes that may lead to a new generation of lithium polymer batteries with high ionic conduction kinetics and stable long-life cycling.
Subjects
  • 2D materials

  • black phosphorous nan...

  • lithium batteries

  • polymer electrolytes

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback