Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. DeriveNet for (Very) Low Resolution Image Classification
 
  • Details
Options

DeriveNet for (Very) Low Resolution Image Classification

ISSN
01628828
Date Issued
2022-10-01
Author(s)
Singh, Maneet
Nagpal, Shruti
Singh, Richa
Vatsa, Mayank
DOI
10.1109/TPAMI.2021.3088756
Abstract
Images captured from a distance often result in (very) low resolution (VLR/LR) region of interest, requiring automated identification. VLR/LR images (or regions of interest) often contain less information content, rendering ineffective feature extraction and classification. To this effect, this research proposes a novel DeriveNet model for VLR/LR classification, which focuses on learning effective class boundaries by utilizing the class-specific domain knowledge. DeriveNet model is jointly trained via two losses: (i) proposed Derived-Margin softmax loss and (ii) the proposed Reconstruction-Center (ReCent) loss. The Derived-Margin softmax loss focuses on learning an effective VLR classifier while explicitly modeling the inter-class variations. The ReCent loss incorporates domain information by learning a HR reconstruction space for approximating the class variations for the VLR/LR samples. It is utilized to derive inter-class margins for the Derived-Margin softmax loss. The DeriveNet model has been trained with a novel Multi-resolution Pyramid based data augmentation which enables the model to learn from varying resolutions during training. Experiments and analysis have been performed on multiple datasets for (i) VLR/LR face recognition, (ii) VLR digit classification, and (iii) VLR/LR face recognition from drone-shot videos. The DeriveNet model achieves state-of-the-art performance across different datasets, thus promoting its utility for several VLR/LR classification tasks.
Subjects
  • digit classification

  • face recognition

  • Very low resolution c...

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback