Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Time-lag in hadronic channel: to explore delayed VHE-flare of 3C 279
 
  • Details
Options

Time-lag in hadronic channel: to explore delayed VHE-flare of 3C 279

Journal
Astrophysics and Space Science
ISSN
0004640X
Date Issued
2025-01
Author(s)
Moharana, Reetanjali 
Department of Physics 
DOI
10.1007/s10509-025-04398-8
Abstract
On 28 January 2018, the High Energy Stereoscopic System (H.E.S.S.) reported a significant very-high-energy (VHE) gamma-ray activity, occurring nearly 11 days after the high-energy (HE) gamma-ray flare observed by Fermi-LAT from the blazar 3C 279. It has long been considered a candidate site for accelerating particles to ultra-high energies (UHE) and producing subsequent secondaries. Such an event can be crucial to explore the different phenomena of secondary production from the UHEs and viable to understand the energetics of the sources. Our study finds that the multi-wavelength flare, spanning UV, optical, X-rays, and HE gamma rays, originates from leptonic emissions, whereas the delayed VHE activity by proton synchrotron emission within the source, results from the extended duration of particle acceleration. To explain the prolonged electromagnetic emission, our model requires a magnetic field luminosity (LB′) 6.9×1043 erg/sec, a proton luminosity (Lp′) 1.2×1046 erg/sec in the jet frame. © The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback