Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs
 
  • Details
Options

Phenotypic side effects prediction by optimizing correlation with chemical and target profiles of drugs

ISSN
1742206X
Date Issued
2015-01-01
Author(s)
Kanji, Rakesh
Sharma, Abhinav
Bagler, Ganesh
DOI
10.1039/c5mb00312a
Abstract
Despite technological progresses and improved understanding of biological systems, discovery of novel drugs is an inefficient, arduous and expensive process. Research and development cost of drugs is unreasonably high, largely attributed to the high attrition rate of candidate drugs due to adverse drug reactions. Computational methods for accurate prediction of drug side effects, rooted in empirical data of drugs, have the potential to enhance the efficacy of the drug discovery process. Identification of features critical for specifying side effects would facilitate efficient computational procedures for their prediction. We devised a generalized ordinary canonical correlation model for prediction of drug side effects based on their chemical properties as well as their target profiles. While the former is based on 2D and 3D chemical features, the latter enumerates a systems-level property of drugs. We find that the model incorporating chemical features outperforms that incorporating target profiles. Furthermore we identified the 2D and 3D chemical properties that yield best results, thereby implying their relevance in specifying adverse drug reactions.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback