Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Vision-based control of UR5 robot to track a moving object under occlusion using Adaptive Kalman Filter
 
  • Details
Options

Vision-based control of UR5 robot to track a moving object under occlusion using Adaptive Kalman Filter

Date Issued
2019-07-02
Author(s)
Ramachandruni, K.
Jaiswal, S.
Shah, Suril Vijaykumar 
Department of Mechanical Engineering 
DOI
10.1145/3352593.3352675
Abstract
This paper presents a robust method to track a moving object under occlusion using an off-the-shelf monocular camera and a 6 Degree of Freedom (DOF) articulated arm. The visual servoing problem of tracking a known object using data from a monocular camera can be solved with a simple closed loop controller. However, this system frequently fails in situations where the object cannot be detected and to overcome this problem an estimation based tracking system is required. This work employs an Adaptive Kalman Filter (AKF) to improve the visual feedback of the camera. The role of the AKF is to estimate the position of the object when it is occluded/out of view and remove the noise and uncertainties associated with visual data. Two estimation models for the AKF are selected for comparison and among them, the Mean-Adaptive acceleration model is implemented on a 6-DOF UR5 articulated arm with a monocular camera mounted in eye-in-hand configuration to follow the known object in 2D cartesian space (without using depth information).
Subjects
  • Adaptive Kalman Filte...

  • Robotic arm

  • Target following

  • Visual Servoing

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback