Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. VGR-net: A view invariant gait recognition network
 
  • Details
Options

VGR-net: A view invariant gait recognition network

Date Issued
2018-03-09
Author(s)
Thapar, Daksh
Nigam, Aditya
Aggarwal, Divyansh
Agarwal, Punjal
DOI
10.1109/ISBA.2018.8311475
Abstract
Biometrie identification systems have become immensely popular and important because of their high reliability and efficiency. However person identification at a distance, still remains a challenging problem. Gait can be seen as an essential biometric feature for human recognition and identification. It can be easily acquired from a distance and does not require any user cooperation thus making it suitable for surveillance. But the task of recognizing an individual using gait can be adversely affected by varying view points making this task more and more challenging. Our proposed approach tackles this problem by identifying spatio-temporal features and performing extensive experimentation and training mechanism. In this paper, we propose a 3-D Convolution Deep Neural Network for person identification using gait under multiple view. It is a 2-stage network, in which we have a classification network that initially identifies the viewing point angle. After that another set of networks (one for each angle) has been trained to identify the person under a particular viewing angle. We have tested this network over CASIA-B publicly available database and have achieved state-of-the-art results. The proposed system is much more efficient in terms of time and space and performing better for almost all angles.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback