Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Metal Oxynitrides for the Electrocatalytic Reduction of Nitrogen to Ammonia
 
  • Details
Options

Metal Oxynitrides for the Electrocatalytic Reduction of Nitrogen to Ammonia

ISSN
19327447
Date Issued
2022-08-11
Author(s)
Young, Samuel D.
Ceballos, Bianca M.
Banerjee, Amitava
Mukundan, Rangachary
Pilania, Ghanshyam
Goldsmith, Bryan R.
DOI
10.1021/acs.jpcc.2c02816
Abstract
The successful deployment of technologies for the electrocatalytic nitrogen reduction reaction (e-NRR) to synthesize ammonia would enable distributed ammonia production with lower greenhouse gas emissions compared to the Haber-Bosch process. However, electrocatalysts that can readily activate N2, promote selective ammonia formation over the competing hydrogen evolution reaction, and maintain stability under reaction conditions are needed to enable this technology. Herein, we give our perspective on metal oxynitrides (AxByOwNz) as an emerging and underexplored materials class for e-NRR. We contrast the activity, selectivity, and stability of metal oxynitrides with those of their metal nitride and metal oxide counterparts. We discuss the different possible e-NRR reaction mechanisms on metal oxynitrides, emphasize challenges related to using metal oxynitrides for e-NRR, and provide an outlook for future research. Ultimately, the huge design space of metal oxynitrides is ripe for exploration to find catalyst formulations that overcome some of the limitations of traditional metal oxides and metal nitrides for e-NRR.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback