Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Next-Gen Mulsemedia: Virtual Reality Haptic Simulator’s Impact on Medical Practitioner for Higher Education Institutions
 
  • Details
Options

Next-Gen Mulsemedia: Virtual Reality Haptic Simulator’s Impact on Medical Practitioner for Higher Education Institutions

Date Issued
2023-01-01
Author(s)
Kumar, Abhishek
Srinivasan, Bhavana
Saudagar, Abdul Khader Jilani
AlTameem, Abdullah
Alkhathami, Mohammed
Alsamani, Badr
Khan, Muhammad Badruddin
Ahmed, Zakir Hussain
Kumar, Ankit
Singh, Kamred Udham
DOI
10.3390/electronics12020356
Abstract
Immersive technology is one of the emerging trends in education in the twenty-first century, whether that be university training programs, or real-world technical training. However, there has been very little research into the effects and consequences of virtual reality. Various types of eLearning have been used to transmit information in recent years, and especially for medical education, virtual reality plays a vital role in terms of providing effective training; the virtual reality app bridged the gap between traditional learning and practical exposure. This unified reality environment enables users to simulate real-life scenarios and obtain useful information that would otherwise be unavailable. In the real world, it is difficult to grasp. In India’s education sector, virtual reality technology is also being researched at an early stage. The goal of this research paper is to assess and explain the impact of virtual reality simulators on medical students’ desire to learn. In the classroom, the core motivation hypothesis is used to boost motivation. The attention, relevance, confidence, and satisfaction (ARCS) model influenced the interpretation of virtual reality’s impact on student motivation and content update implementation. The study examined the numerous variables of virtual reality simulators and their impact on medical education, using the ARCS model as a factor analysis. According to the study, students wsould learn more and be more motivated if virtual reality simulators were used. Attention, relevance, satisfaction, and confidence indicators were used to develop motivational variables, and the results were significant. We have taken the sample of 607 students’ data for this analysis, through which we have identified the potential of VR made available to students, as well as the faculty, which has the potential to transform medical education. Instructors may be wary of incorporating new technology like VR into their curriculums, but with the support of their students’ learning habits, this may not be a problem. It may help instructors feel more confident, while also enhancing the relationship between faculty, librarians, and students.
Subjects
  • 3D animation

  • ARCS model

  • ICT (information and ...

  • simulation

  • virtual reality

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback