Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Obtaining human microglia from adult human brain tissue
 
  • Details
Options

Obtaining human microglia from adult human brain tissue

ISSN
1940087X
Date Issued
2020-08-01
Author(s)
Agrawal, Ishan
Saxena, Shivanjali
Nair, Preethika
Jha, Deepak
Jha, Sushmita
DOI
10.3791/61438
Abstract
Microglia are resident innate immune cells of the central nervous system (CNS). Microglia play a critical role during development, in maintaining homeostasis, and during infection or injury. Several independent research groups have highlighted the central role that microglia play in autoimmune diseases, autoinflammatory syndromes and cancers. The activation of microglia in some neurological diseases may directly participate in pathogenic processes. Primary microglia are a powerful tool to understand the immune responses in the brain, cell-cell interactions and dysregulated microglia phenotypes in disease. Primary microglia mimic in vivo microglial properties better than immortalized microglial cell lines. Human adult microglia exhibit distinct properties as compared to human fetal and rodent microglia. This protocol provides an efficient method for isolation of primary microglia from adult human brain. Studying these microglia can provide critical insights into cell-cell interactions between microglia and other resident cellular populations in the CNS including, oligodendrocytes, neurons and astrocytes. Additionally, microglia from different human brains may be cultured for characterization of unique immune responses for personalized medicine and a myriad of therapeutic applications.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback