Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Theoretical investigation of the dissociation chemistry of formyl halides in the gas phase
 
  • Details
Options

Theoretical investigation of the dissociation chemistry of formyl halides in the gas phase

ISSN
14639076
Date Issued
2020-09-21
Author(s)
Gahlaut, Anchal
Paranjothy, Manikandan
DOI
10.1039/d0cp02126a
Abstract
Halogen substituted analogues of formaldehyde, HXCO (X = F, Cl, Br, and I), play a crucial role in the degradation of stratospheric ozone. Several spectroscopic and quantum chemistry investigations of the dissociation chemistry of formyl halides have been reported in the literature. Due to their importance in combustion and atmospheric chemistry, we investigated the gas phase dissociation of formyl halides using electronic structure theory, direct chemical dynamics simulations, and Rice-Ramsperger-Kassel-Marcus rate constant calculations. Chemical dynamics simulations were performed using density functional B3LYP/6-31G* theory with suitable effective core potentials for the halogen atoms. Simulations showed multiple pathways and mechanisms for the dissociation of formyl halides. The major reaction products were HX + CO which formedviadirect and indirect pathways. Trajectory lifetime distribution calculations indicated non-statistical dissociation dynamics.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback