Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. On Matching Finger-Selfies Using Deep Scattering Networks
 
  • Details
Options

On Matching Finger-Selfies Using Deep Scattering Networks

Date Issued
2020-10-01
Author(s)
Malhotra, Aakarsh
Sankaran, Anush
Vatsa, Mayank
Singh, Richa
DOI
10.1109/TBIOM.2020.2999850
Abstract
With the advancements in technology, smartphones' capabilities have increased immensely. For instance, the smartphone cameras are being used for face and ocular biometric-based authentication. This research proposes finger-selfie based authentication mechanism, which uses a smartphone camera to acquire a selfie of a finger. In addition to personal device-level authentication, finger-selfies may also be matched with livescan fingerprints present in the legacy/national ID databases for remote or touchless authentication. We propose an algorithm which comprises segmentation, enhancement, Deep Scattering Network based feature extraction, and Random Decision Forest to authenticate finger-selfies. This paper also presents one of the largest finger-selfie database with over 19, 400 images. The images in the IIIT-D Smartphone Finger-selfie Database v2 are captured using multiple smartphones and include variations due to background, illumination, resolution, and sensors. Results and comparison with existing algorithms show the efficacy of the proposed algorithm which yields equal error rates in the range of 2.1-5.2% for different experimental protocols.
Subjects
  • deep scattering netwo...

  • Finger-selfie

  • fingerprint database

  • touchless fingerprint...

  • verification

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback