Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Few-Shot Referring Relationships in Videos
 
  • Details
Options

Few-Shot Referring Relationships in Videos

ISSN
10636919
Date Issued
2023-01-01
Author(s)
Kumar, Yogesh
Mishra, Anand
DOI
10.1109/CVPR52729.2023.00227
Abstract
Interpreting visual relationships is a core aspect of comprehensive video understanding. Given a query visual relationship as <subject, predicate, object> and a test video, our objective is to localize the subject and object that are connected via the predicate. Given modern visio-lingual understanding capabilities, solving this problem is achievable, provided that there are large-scale annotated training examples available. However, annotating for every combination of subject, object, and predicate is cumbersome, expensive, and possibly infeasible. Therefore, there is a need for models that can learn to spatially and temporally localize subjects and objects that are connected via an unseen predicate using only a few support set videos sharing the common predicate. We address this challenging problem, referred to as few-shot referring relationships in videos for the first time. To this end, we pose the problem as a minimization of an objective function defined over a T-partite random field. Here, the vertices of the random field correspond to candidate bounding boxes for the subject and object, and T represents the number of frames in the test video. This objective function is composed of frame-level and visual relationship similarity potentials. To learn these potentials, we use a relation network that takes query-conditioned translational relationship embedding as inputs and is meta-trained using support set videos in an episodic manner. Further, the objective function is minimized using a belief propagation-based message passing on the random field to obtain the spatiotemporal localization or subject and object trajectories. We perform extensive experiments using two public benchmarks, namely ImageNet-VidVRD and VidOR, and compare the proposed approach with competitive baselines to assess its efficacy.
Subjects
  • continual

  • low-shot

  • meta

  • or long-tail learning...

  • Transfer

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback