Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Membrane Cholesterol Enrichment of Red Blood Cell-Derived Microparticles Results in Prolonged Circulation
 
  • Details
Options

Membrane Cholesterol Enrichment of Red Blood Cell-Derived Microparticles Results in Prolonged Circulation

Date Issued
2022
Author(s)
Tang, JC
Indian Institute of Technology Jodhpur
Lee, CH
Lu, T
Vankayala, R
Hanley, T
Azubuogu, C
Li, J
Nair, MG
Jia, WC
Anvari, B
DOI
10.1021/acsabm.1c01104
Abstract
Particles fabricated from red blood cells (RBCs) can serve as vehicles for delivery of various biomedical cargos. Flipping of phosphatidylserine (PS) from the inner to the outer membrane leaflet normally occurs during the fabrication of such particles. PS externalization is a signal for phagocytic removal of the particles from circulation. Herein, we demonstrate that membrane cholesterol enrichment can mitigate the outward display of PS on microparticles engineered from RBCs. Our in-vitro results show that the phagocytic uptake of cholesterol-enriched particles by murine macrophages takes place at a lowered rate, resulting in reduced uptake as compared to RBC-derived particles without cholesterol enrichment. When administered via tail-vein injection into healthy mice, the percent of injected dose (ID) per gram of extracted blood for cholesterol-enriched particles was similar to 1.5 and 1.8 times higher than the particles without cholesterol enrichment at 4 and 24 h, respectively. At 24 h, similar to 43% ID/g of the particles without cholesterol enrichment was eliminated or metabolized while similar to 94% ID/g of the cholesterol-enriched particles were still retained in the body. These results indicate that membrane cholesterol enrichment is an effective method to reduce PS externalization on the surface of RBC-derived particles and increase their longevity in circulation.
Subjects
  • biological vectors

  • biomimetics

  • drug delivery

  • erythrocytes

  • indocyanine green

Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and maintained by Dr. Kamlesh Patel and Team, S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback