Repository logo
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Projects
  • People
  • Statistics
  • English
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Scholalry Output
  3. Publications
  4. Machine learning based prediction of phase ordering dynamics
 
  • Details
Options

Machine learning based prediction of phase ordering dynamics

ISSN
10541500
Date Issued
2023-06-01
Author(s)
Chauhan, Swati
Mandal, Swarnendu
Yadav, Vijay
Jaiswal, Prabhat K.
Priya, Madhu
Shrimali, Manish Dev
DOI
10.1063/5.0156611
Abstract
Machine learning has proven exceptionally competent in numerous applications of studying dynamical systems. In this article, we demonstrate the effectiveness of reservoir computing, a famous machine learning architecture, in learning a high-dimensional spatiotemporal pattern. We employ an echo-state network to predict the phase ordering dynamics of 2D binary systems - Ising magnet and binary alloys. Importantly, we emphasize that a single reservoir can be competent enough to process the information from a large number of state variables involved in the specific task at minimal computational training cost. Two significant equations of phase ordering kinetics, the time-dependent Ginzburg-Landau and Cahn-Hilliard-Cook equations, are used to depict the result of numerical simulations. Consideration of systems with both conserved and non-conserved order parameters portrays the scalability of our employed scheme.
Copyright © 2016-2025  Indian Institute of Technology Jodhpur

Developed and Maintaining by S. R. Ranganathan Learning Hub, IIT Jodhpur.

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback